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Motivation
• Protein-Protein Interactions (PPIs) are crucial in regulating cellular functions. 

• Pressing need for strategies aimed at designing new protein binders. 

• Help understand underlying mechanisms of protein interactions. 

• Help advance therapeutic interventions.



Motivation
• Proteins can be modeled as graphs, meshes, point clouds. 

• Geometric deep learning for geometric and chemical mechanisms governing PPIs. 

• Geometric deep learning for modeling PPIs.

Point Cloud Representation of Protein as different scalesProtein Residue



• (1) PPIretrieval takes an unseen protein  with its corresponding binding site. 

• (2) Encoder network generates surface representation  . 

• (3) PPIretrieval identifies a binding partner  with surface  from our database. 

• (4) Decoder network takes ,  and predictes their binding interface.
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• (1) PPIretrieval takes a paired proteins  with their binding interface. 

• (2) Encoder network generates surface representations . 
• (3) These surface representations are stored in our database. 

• (4) Decoder network takes  and learns their interactions. 

• (5) PPIretrieval is optimized to learn the ‘lock-and-key’ structure between  .
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• Encoding Stage 
• (1) Surface Generation 

• Define heat operator  on  . 
• Calculate first k eigenfunctions of heat operator  with eigenvalues  . 
• Calculate Moore-Penrose pseudo-inverse  . 

• (2) Geometric Descriptor 
• Calculate Mean curvature  on  . 
• Calculate Gaussian curvature  on  . 
• Calculate Heat Kernel Signatures  on  . 
• Transform geometric features  .
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• Encoding Stage 
• (3) Chemical Descriptor 

• Compute residue-level chemical features: 
• Compute chemical features  .  
• Augment chemical features  .  

• For every  every surface point , compute surface-level chemical features from : 
• Find k nearest neighboring residues  with features  

• Compute chemical features  

• Compute surface features  . 
• (4) Message Passing 

• Compute aggregated surface features  via heat diffusion defined by , ,  (details see paper). 
• During Training 

• Encoder network generates  for input paired receptor and ligand proteins.

FRes ← MLP([P, Yres
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FRes ← EGNN([FRes, vP])
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• Decoding Stage 
• Aiming to predict ligand’s binding site conditioned on receptor’s binding site 

• (1) Interaction Block 
• Augment receptor surface features  .  
• Augment ligand surface features  .  

• Compute cross-attention  . 

• (2) Binding Site Prediction 
• Predict ligand’s binding site  

• For every  every resiue , compute residue-level binding site from : 
• Find k nearest neighboring residues  with features  
• Compute chemical features  

• Compute binding site  

• During Training 
• Each PPI sample is treated as two training instances.

HR ← EGNN([MLP(HR, Ysurf
R ), xR])

HL ← EGNN([MLP(HL), xL])
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• Utilize the ‘lock-and-key’ structure between the receptor and ligand. 

• Achieve by three training objectives: 
• (1) Lock-and-Key Optimization 

• Assemble the Jigsaw puzzles of receptor and ligand. 

• (2) Contrastive Optimization 
• Bring residues of the binding interface closer. 
• Push residue that do not belong to the binding interface farther apart. 

• (3) Binding Interface Optimization 
• Optimize the predictions of binding interfaces.

PPIretrieval Optimization



• Ground-truth matching matrix  . 
• Construct a soft-matching matrix 

•  . 
•  is a doublystochastic matrix,  measures soft-matching score between 

residues  in receptor and ligand. 

•  . 
•  serves the dual purpose: 

• Encourage alignment between soft-matching scores and the ground truth. 
• Ensure residues are matched with its complementary part in the opposite protein.

X ∈ {0,1}NR×NL, xij = 1 if dij ≤ dcut

X̂ = sinkhorn(exp(F̂T
RW F̂L /τ)) ∈ [0,1]NR×NL

X̂ X̂ij
i, j

ℒmatch = cross-entropy(X, X̂)
ℒmatch

Lock-and-Key Optimization



• Bring residues of the binding interface closer. 
• Push residue that do not belong to the binding interface farther apart. 

•  

•  minimizes the distance between corresponding residues and 
maximizes the distance between non-corresponding residues.

ℒcontra = − ∑i∈Yres
R

∑j∈Yres
L

log
exp( ̂fi
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L /τ)
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• Directly optimize the predictions of binding interfaces. 
•  . 

•  

• Overall optimization strategy is to leverage the ‘lock-and-key’ structure 
inherent in PPI complexes.

ℒbind = cross-entropy(Yres
R , Ŷres

R ) + cross-entropy(Yres
L , Ŷres

L )

ℒ = ℒmatch + ℒcontra + ℒbind

Binding Interface Optimization



• Visualization of 
PPIretrieval results for 
proteins in the PDB test 
set, evaluated by 
dockQ. Proteins colored 
in blue are input query 
proteins; proteins 
colored in red are 
binding partners. Left 
column displays the 
ground-truth structures; 
right column shows the 
structures predicted by 
PPIretrieval.

Retrieval Visualization
True Retrieval 

(a) Interface dockQ similarity: 0.4845 

(b) Interface dockQ similarity: 0.4735

(c) Interface dockQ similarity: 0.4572

(d) Interface dockQ similarity: 0.5007 

True Retrieval 

(e) Interface dockQ similarity: 0.4550 

(f) Interface dockQ similarity: 0.5280



• The query protein has two binding partners: one stored in our surface database (pdb 
id: 5J28), while the other not (pdb id: 1DGC). 

• Although the query protein in the two ground-truth structures shares the same 
sequence representation, there are slightlt different in their geometry. 

• PPIretrieval identifies the protein in the database that most closely matches in both 
sequential and geometric representation

Case Study
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• For a PPI in the test 
set, a query protein 
with a known binding 
site, we compare 
between 
dockQ(Ytrue, Yref

B ), dockQ(Ytrue, Ymasif
B ),

dockQ(Ytrue, Ydmasif
B ), dockQ(Ytrue, Ypred

B ),

TM(Ytrue, Yref
B ), TM(Ytrue, Ymasif

B ),

TM(Ytrue, Ydmasif
B ), TM(Ytrue, Ypred

B ),

rmsd(Ytrue, Yref
B ), rmsd(Ytrue, Ymasif

B ),

rmsd(Ytrue, Ydmasif
B ), rmsd(Ytrue, Ypred

B ) .

Evaluation
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Emperical Results



Cross-Dataset Validation
• We take the model trained on PDB training set only to encode the PPIs in 

DIPS and PPBS training and validation sets, respectively.



More Emperical Results



Future Direction
• Improving model size and training. 

• Including more high-qiality PPI data. 

• Designing interpretable embedding space for visualization, like foldseek. 

• Establishing webserve for PPIretrieval, like foldseek. 



Discussion
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