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We Started For A Simple Reason...

e We know that both molecular structures and conformations are important for
representing a complete molecule

2D Molecular Strutcture

3D Geometric Strutcture

e When we start this project (a year and a half ago), there is no model for generating
both perspectives for a molecule

e We find 1t 1s insufficient, so we aim to design a generative model, capable of
capturing 2D structures and 3D conformations for generation



We Aim To...

e We realize 2D structures and 3D conformations are essential for a comprehensive
molecular representation

e Therefore, we aim to introduce a diffusion model, which joinly learns and
generates these two aspects for a molecule

e The idea is simple, the joint model should combine the diffusion processes for
structures and conformations in one step



We Introduce MUDIfL...

Algorithm 1 Training MUDiff Algorithm 2 Sampling from MUDiff
1: Input: A complete molecule M = (H, E, X) ; ?(f‘ﬂpl_e 1%/[?% F{ , X7 1NdN (0,1), Er ~ go
2: Samplet ~U(1,---,T) | o ) e
3:  Compute €11, €x, E =
3: Sample ex, ex ~ N (0,1) Eoi % B %
. . wQ([ ty T]? ty t) — (07 tao)
4: Subtract center of gravity from ex 4 Sample B o(By [Ey)
~ ~ . t—1 7~ t—1 t
5: Cor?pute H; = a:H + atetH, X = ap X + 5. Sample exr, ex ~ N(0, I)
O-tEX _ _ 6 COmpute I:It_l _ I:It - 0'1;2|t—1é§—1
6: Sample Et ~ EQt Otsp1€H Ctlt—1 Xt|t—19t
7. Compute €11, €, p(E) — 7. Subtract center of gravity from ex
Yo (|He, %], X, Ey) — (0,X4,0) 8: Compute X;_1 = O‘t}|(tt—1 — Ztt'ft__l;f +
8: Minimize |lef; — €ull° + |ex — | + | Oioi-1€X
A ),9. end for ~
CE(E, p(E)) 10: Sample M ~ p(M]|Mo)

e We introduce MUD1it, a model that jointly learns and generates molecular
structures and conformations in one step

 The design 1s simple, consisting of discrete and continuous diffusion processes,
adding noises to atom features, edge features, and atom positions

e To achieve this, we introduce MUformer as the backbone autoencoder model



We Draw Insplratmn KFrom...
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e We draw inspiration from TransformerM [1] to design MU{ormer, taking its advantage to process
different data types of a molecule

 TransformerM take multiple views of a molecule, having two seperate channels to process edge
encodings (structures) and distance encodings (conformations) for property predictions

* We are aware the two-channel design 1s well-aligned with our task
[1] ONE TRANSFORMER CAN UNDERSTAND BOTH 2D & 3D MOLECULAR DATA



2D Molecular Strutcture

Atom Feature

3D Geometric Strutcture
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MU{former process 2D molecular graphs and 3D molecular conformations, but with invariant (
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A distinct advantage 1s, the model still works when either 2D or 3D data 1s missing
With missing 2D structures, MUformer activate equivariant (

With missing 3D conformations, MUformer activate invariant (

With 2D structures and 3D conformations provided, MUformer activate both invariant and equivariant channels,
predicting atom features, positions, and molecular structures
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We Design Backbone MUformer Autoencoder...
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Experiment

Molecule Generation

 We evaluate the atom and molecule stability of the
generated compounds by measuring the proportion of
atoms that have the correct valency for atom stability,
and the proportion of generated molecules 1n which all
atoms are stable for molecule stability.

e The table shows that MUD it can generate molecules
that are significantly more stable than the baseline
models 1n terms of negative log-likelihood and
molecule stability

Table 2: Negative log-likelihood, atom stabil-
ity, and molecule stability are evaluated with
standard deviation across 3 runs on QM9, us-
ing 10K samples (with hydrogen) from the
model. The results surpass those of previous

models, as reported in [4, 6].

Method NLL Atom Stable(%) Mol Stable(%)
Data . 99.0 95.2
ENF -59.7 85.0 4.9
GSchnet - 95.7 68.1
GDM -92.5 97.6 71.6
EDM -110.7 £ 1.5 98.7 £ 0.1 82.0+04
DiGress - 98.1 £0.3 79.8 £ 5.6
MDM 98.6 91.9

GeoLDM -
MUDIST (ours) -135.5+2.1

98.9 + 0.1
98.8 +- 0.2

89.4 0.5
899+ 1.1




Special Experiment

Molecule Generation with Limited 3D Data

 We introduce a new molecule generation task that
incorporates limited 3D data, as many real-world

datasets lack complete 3D structures.
P Table 1: Negative log-likelihood, atom stabil-

e We randomly split the 100K training molecules into two ity, and molecule stability are evaluated with
sets: 30K with both 2D and 3D structures and 70K standard deviation across 3 runs on QM9, us-
with only 2D structures. We train the model on the 30K ing 10K samples from the model. 30K+70K
samples using both the invariant and equivariant channels means model trained with limited 3D data.

and validate on 18K samples until NLL converges. — T A L M i
DiGress : 98.1 £ 0.3 9.8+ 5.6
* We fine-tune the trained model on the remaining 70K MUDMT 0K+ 70K) 100534 983507  6inLd
molecules with only 2D structures and validate/test on
18K/13K samples.

e MUDiff achieved competitive results in generating
stable molecules, even with limited 3D information 1n

the training set, compared to the baselines.



