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We Started For A Simple Reason…
• We know that both molecular structures and conformations are important for 

representing a complete molecule


• When we start this project (a year and a half ago), there is no model for generating 
both perspectives for a molecule


• We find it is insufficient, so we aim to design a generative model, capable of 
capturing 2D structures and 3D conformations for generation



We Aim To…
• We realize 2D structures and 3D conformations are essential for a comprehensive 

molecular representation


• Therefore, we aim to introduce a diffusion model, which joinly learns and 
generates these two aspects for a molecule


• The idea is simple, the joint model should combine the diffusion processes for 
structures and conformations in one step



We Introduce MUDiff…

• We introduce MUDiff, a model that jointly learns and generates molecular 
structures and conformations in one step


• The design is simple, consisting of discrete and continuous diffusion processes, 
adding noises to atom features, edge features, and atom positions


• To achieve this, we introduce MUformer as the backbone autoencoder model
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Edge Features Following Sec 2.1, we transform the discrete clean edge type to obtain noisy ones,151

Ẽt = EQ̄t. (3)

where the transition matrix Q̄t is obtained by Q̄t = ↵tI+ (1� ↵t) b
t

b
/b 2 Rb⇥b. We use uniform152

transitions over the number of edge types b [6, 16], resulting in a uniform limit distribution q1 over153

edge categories (see App E). Additionally, since molecules are always undirected graphs, we only154

apply noise to the upper triangular of the edge representation matrix and then symmetrize the matrix,155

which ensures that changes made on the edges are consistent across the graph.156

3.2 Denoising Process157

To date, no existing models can simultaneously predict the features of atoms H, their coordinates158

X, and the structures of molecules E. To address this gap, we introduce a novel denoising network,159

named MUformer, which learns the denoising process to make predictions for the comprehensive160

representation of molecules. This model is unique in its ability to consider all aspects of the molecule161

in a unified manner while ensuring that the denoising process is equivariant, as suggested by [3].162

Algorithm 1 Training MUDiff
1: Input: A complete molecule M = (H,E,X)
2: Sample t ⇠ U(1, · · · , T )
3: Sample ✏H, ✏X ⇠ N (0, I)
4: Subtract center of gravity from ✏X
5: Compute H̃t = ↵tH + �t✏

t
H, X̃t = ↵tX +

�t✏
t
X

6: Sample Ẽt ⇠ EQ̃t

7: Compute ✏̂tH, ✏̂tX, p(Ê) =
 ✓([H̃t, t

T ], X̃t, Ẽt)� (0, X̃t,0)
8: Minimize k✏tH � ✏̂tHk2 + k✏tX � ✏̂tXk2 +

CE(E, p(Ê))

The denoising network, denoted by  ✓, takes as163

input a noisy molecule M̃t = (H̃t, Ẽt, X̃t) and164

outputs estimates for the clean molecule M̂. The165

detailed architecture and methodology of MUformer166

are presented in Sec 4, showcasing its capacity167

to generate comprehensive molecular representa-168

tions that encompass atom features, coordinates, and169

molecular structures.170

Network Estimation Instead of directly predict-171

ing the atom representations Ĥ, X̂, the network at-172

tempts to predict the Gaussian noises for atom fea-173

tures and coordinates ✏̂H, ✏̂X, as it has been shown174

to be easier to optimize in [14]. This approach allows the network to differentiate between the noise175

added by the noising process and the ground-truth representations, H,X. The network takes as input176

a noisy molecule, where atom features are concatenated with the normalized time step t

T
, and predicts177

the probability of edge features, as well as the estimates of noises for atom features and coordinates,178

✏̂t
H
, ✏̂t

X
, p(Ê) =  ✓([H̃t,

t

T
], X̃t, Ẽt)� (0, X̃t,0), (4)

where the input coordinates are then subtracted from the estimated noise for coordinates to ensure179

that the outputs lie on the zero center of gravity subspace, as suggested by [4]. We subsequently180

obtain estimates of atom features and coordinates by181

Ĥ =
1

↵t

H̃t �
�t

↵t

✏̂t
H
, X̂ =

1

↵t

X̃t �
�t

↵t

✏̂t
X
. (5)

Training Objective For atom features and coordinates, the objective is to accurately predict the182

true noise present in the observations of atom features and coordinates. To achieve this, we follow183

the approach outlined in [4] and minimize the distance between the true noise and the estimates of184

noise predicted by the network  ✓. The objectives for atoms are defined as,185

LH

t
=

1

2
E✏t

H
⇠NH(0,I)

⇥
!(t)k✏t

H
� ✏̂t

H
k2
⇤
, LX

t
=

1

2
E✏t

X
⇠NX(0,I)

⇥
!(t)k✏t

X
� ✏̂t

X
k2
⇤
, (6)

where !(t) = (1� SNR(t� 1)/SNR(t)). To stabilize the training process, we set !(t) = 1 during186

the training phase, as suggested by [4, 14].187

To handle edge features, we approach it as a classification problem and minimize the cross-entropy188

loss for each atom pair (i, j) 2 E. The loss is calculated between the actual edge type and the189

predicted edge probability distribution,190

LE

t
= E(i,j)⇠E

h
Eij log(p(Êij))

i
. (7)

At every time step t, the total loss is computed as the sum of the three losses, Lt = LH

t
+ LE

t
+ LX

t
.191
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Algorithm 2 Sampling from MUDiff

1: Sample M̃T : H̃T , X̃T ⇠ N (0, I), ẼT ⇠ q1
2: for t = T, T � 1, . . . , 1 do
3: Compute ✏̂tH, ✏̂tX, Ê =

 ✓([H̃t, t
T ], X̃t, Ẽt)� (0, X̃t,0)

4: Sample Ẽt�1 ⇠ p(Ẽt�1|Ẽt)
5: Sample ✏H, ✏X ⇠ N (0, I)

6: Compute H̃t�1 = H̃t
↵t|t�1

�
�2
t|t�1✏̂

t
H

↵t|t�1�t
+

�t!t�1✏H
7: Subtract center of gravity from ✏X

8: Compute X̃t�1 = X̃t
↵t|t�1

�
�2
t|t�1✏̂

t
X

↵t|t�1�t
+

�t!t�1✏X
9: end for

10: Sample M ⇠ p(M|M̃0)

The entire training process is described in Algo-192

rithm 1. Additionally, the derivation of the varia-193

tional evidence lower bound on the likelihood can194

be found in App F.195

Sampling Once the model is trained, it can be196

used to sample new molecules. The true sampling197

process p(M̃t�1|M̃t) uses the approximation of a198

complete molecule M̂ = (Ĥ, Ê, X̂). The complete199

molecule is sampled by taking the product of the200

posterior distributions of atom features, coordinates,201

and edge features as202

p(M̃t�1|M̃t) = p(H̃t�1|H̃t)p(Ẽt�1|Ẽt)p(X̃t�1|X̃t),
(8)

with the posterior distributions of atom features and203

coordinates from Eq 1 and the posterior distribution of edges defined in the App G. The sampling204

process is described in Algorithm 2. Also, the zeroth likelihood estimation is explained in App H.205

Analysis of Memory Complexity We compare the memory complexity of our method, MUDiff,206

with two existing methods: EDM [4] and DiGress [6]. Considering atom features of size n ⇥ d,207

atom positions of size n⇥ 3, and edge features of size n⇥ n⇥ b, where n is the number of atoms,208

d is the dimension of atom features, and b is the dimension of edge features, EDM’s memory209

complexity is O(nd+3n), and DiGress’s is O(nd+ n
2
b). MUDiff has a higher memory complexity210

of O(nd+ 3n+ n
2
b), but offers a more comprehensive molecular representation by including both211

2D and 3D information for topological and geometric structures. For more on scalability issues and212

potential solutions, see App K.213

4 MUformer: Molecule Unified Transformer214
To learn the complete molecular representation, in this section, we propose a novel equivariant215

graph transformer MUformer, denoted by  ✓ (visualized in Fig 1), which contains 6 encoding216

functions (Sec 4.1&App A.1), 4 attention biases (Sec 4.2&App A.3), and 2 attention channels217

(Sec 4.3&App A.3). It takes as input a complete molecule M = (H,E,X) with H 2 Rn⇥d
,E 2218

Rn⇥n⇥b
,X 2 Rn⇥3, and outputs the predicted molecule M̂ = (Ĥ, Ê, X̂). For clarity, we refer to219

the 2D molecular structure as M2D = (H,E), and the 3D geometric structure as M3D = (H,X). In220

the following subsections, we will introduce each component of our MUformer in details.221

Our MUformer architecture can be used under different input conditions. When only 2D molecular222

information is available, only the invariant channel is activated, and the model makes predictions for223

atom and edge features only. When only 3D molecular information is available, only the equivariant224

channel is activated, and the model makes predictions for atom features and coordinates only. When225

both 2D and 3D molecular data are provided, the invariant and equivariant channels are activated,226

and the model can make predictions for the complete molecule, including atom features, molecular227

structure, and geometric structure. A detailed introduction of MUformer is discussed in App A.228

4.1 Encodings229

The MUformer consists of 6 encoding functions, with 3 being message-passing based, designed to230

incorporate atomic, positional, and structural information into a concise and expressive representation,231

particularly suited for handling graph-structured inputs. A more complete introduction of MUformer232

encoding functions are discussed in App A.1.233

1. Atom Encoding The authors in [19] propose a method of utilizing in-degree deg� and out-234

degree deg+ obtained from 2D molecular graphs M2D to incorporate centrality information into the235

atom-wise encoding process, z1D
hi

for node i is,236

z
1D
hi

= Watom1hi +Win-deg1deg�
i
+Wout-deg1deg+

i
. (9)

2. Bond Encoding We incorporate pair-wise atom information into the edge encoding with237

message-passing mechanism. For every edge eij , we use a permutation-invariant function to238

generate the embedded edge representations, ensuring consistency in the learned representation239

regardless of the order of the atoms,240

zeij = Wcomb1([Watom2hi +Wedge1eij +Watom2hj ]) + bcomb1 . (10)

In addition, to ensure the symmetry of edge encoding, we calculate it as zeij = (zeij + zeji)/2.241
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We Draw Inspiration From…

• We draw inspiration from TransformerM [1] to design MUformer, taking its advantage to process 
different data types of a molecule 


• TransformerM take multiple views of a molecule, having two seperate channels to process edge 
encodings (structures) and distance encodings (conformations) for property predictions


• We are aware the two-channel design is well-aligned with our task

[1] ONE TRANSFORMER CAN UNDERSTAND BOTH 2D & 3D MOLECULAR DATA

TransformerM Design



We Design Backbone MUformer Autoencoder…

• MUformer process 2D molecular graphs and 3D molecular conformations, but with invariant (purple) and equivariant 
(brown) channels, similar to TransformerM


• A distinct advantage is, the model still works when either 2D or 3D data is missing

• With missing 2D structures, MUformer activate equivariant (brown) channel, predicting atom features and positions

• With missing 3D conformations, MUformer activate invariant (purple) channel, predicting atom features and structures

• With 2D structures and 3D conformations provided, MUformer activate both invariant and equivariant channels, 

predicting atom features, positions, and molecular structures



Experiment
Molecule Generation
• We evaluate the atom and molecule stability of the 

generated compounds by measuring the proportion of 
atoms that have the correct valency for atom stability, 
and the proportion of generated molecules in which all 
atoms are stable for molecule stability. 


• The table shows that MUDiff can generate molecules 
that are significantly more stable than the baseline 
models in terms of negative log-likelihood and 
molecule stability 


•



Special Experiment
Molecule Generation with Limited 3D Data
• We introduce a new molecule generation task that 

incorporates limited 3D data, as many real-world 
datasets lack complete 3D structures.


• We randomly split the 100K training molecules into two 
sets: 30K with both 2D and 3D structures and 70K 
with only 2D structures. We train the model on the 30K 
samples using both the invariant and equivariant channels 
and validate on 18K samples until NLL converges. 


• We fine-tune the trained model on the remaining 70K 
molecules with only 2D structures and validate/test on 
18K/13K samples.


• MUDiff achieved competitive results in generating 
stable molecules, even with limited 3D information in 
the training set, compared to the baselines.


